Abstract

The demand for natural cosmetics has steadily increased in recent years. However, challenges occur especially in quality preservation regarding oxidative spoilage of natural cosmetic products, as the use of synthetic preservatives and antioxidants is limited. Therefore, it is important to find nature-based ingredients to ensure shelf life in natural cosmetic formulations. As a result, potential is seen in the use of plant-based antioxidant extracts. The aim of this work was to determine the suitability of the method combination by measuring the antioxidant activity, oxygen concentration, and volatile oxidation products via gas chromatography (hexanal) for the characterization of the influence of some plant extracts on the oxidative stability of natural cosmetic emulsions. Plant extracts of Riesling (Vitis vinifera) pomace, apple (Malus domestica) pomace, coffee (Coffea arabica) grounds, cocoa (Theobroma cacao) husk, and coffee (Coffea arabica) powder extract were incorporated in stable O/W emulsion formulations, while an emulsion without extract functioned as blank. Afterwards, the emulsions were subjected to 3-month accelerated storage tests with and without light exposure. Their oxygen uptake was investigated, and headspace gas chromatography measurements were performed to detect the fatty acid oxidation products formed during oxidative processes in the samples. The results showed that all emulsion samples under light exposure had a higher oxygen uptake and an increase in the characteristic fatty acid oxidation products compared with those stored under light exclusion. However, differences in oxygen uptake under light exposure were observed depending on the plant extract. Therefore, for O/W emulsions, the daily oxygen consumption rate correlated exponentially with the antioxidant activity, and the hexanal concentration correlated linearly with the daily oxygen consumption rate.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.