Abstract

The microstructural and textural evolution of 60% cold-rolling-deformation Er metal (purity ≥ 99.7%) during annealing were investigated by electron-backscattered diffraction (EBSD) and X-ray diffraction (XRD). The research results showed that the texture of the (0001) plane orientation was strengthened, but there was no apparent enhancement of the (011¯0) and (1¯21¯0) plane orientations with increasing the annealing temperature. The recrystallization frequency and grain sizes gradually stabilized after the annealing duration of more than 1 h at 740 °C; the annealing duration and the recrystallization frequency were fitted to the equation: y=1 - exp (-0.3269x0.2506). HAGBs were predominant, and the distribution of grain sizes was the most uniform after annealing at 740 °C × 1 h, which was the optimal annealing process of the Er metal with 60% cold-rolling deformation. However, the recrystallization was transferred to the substructure due to grain boundary migration and twining under an excessive annealing temperature and duration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.