Abstract

In order to study the influence of an unsupported sleeper on the vertical bearing characteristics of heavy-haul railway ballast, a three-dimensional discrete element model (DEM) was established for a ballasted track, by removing ballast particles that come into contact with the bottom of the sleeper from the model to simulate the unsupported sleeper. Vertical bearing characteristics for ballast on different types of unsupported sleepers were studied. The results showed that an unsupported sleeper could reduce the bearing area of the ballast below the sleeper and reduce the number of ballast particles that were in contact. It could also lead to an increase in the maximum contact force between the particles, accelerating the deterioration of the particles (thus affecting the overall performance of the ballast) and reducing the vertical stiffness of the ballast. As the unsupported length and width increased, vertical stiffness gradually decreased. The vertical ballast stiffness for an unsupported sleeper was then used in a dynamic coupled vehicle/track model, and the effect of the unsupported sleeper on wheel/rail interaction was analyzed. Results showed that increasing the unsupported length and width leads to a decrease in the supporting force on the unsupported sleeper and to an increase in the supporting force on the adjacent sleepers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call