Abstract

We study the impact of varying degrees of unilateral stenoses of an carotid artery on pulsatile blood flow and oxygen transport from the heart to the brain. For the numerical simulation a model reduction approach is used involving non-linear 1-D transport equation systems, linear 1-D transport equations and 0-D models. The haemodynamic effects of vessels beyond the outflow boundaries of the 1-D models are accounted for using a 0-D lumped three element windkessel model. At the cerebral outflow boundaries the 0-D windkessel model is extended by metabolic autoregulation, based on the cerebral oxygen supply. Additionally lumped parameter models are applied to incorporate the impact of the carotid stenosis. Our model suggests that for a severe unilateral stenosis in the right carotid artery the partial pressure of oxygen in the brain area at risk can only be restored, if the corresponding cerebral resistance is significantly decreased and if the circle of Willis (CoW) is complete.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.