Abstract

Two-spotted spider mite, Tetranychus urticae Koch, is one of the important pests of bean, which can cause severe damages on it. Silicon is one of the micronutrient elements, as its spray on the leaves can decrease the population of the pest. In this research, the impact of four different doses of Si (0, 1, 1/5, 2 ppm) was investigated on biological and population growth parameters of T. urticae. The experiments were carried out in Petri dishes in an incubator at 25°C ± 2°C, 65% ± 5% RH and 16 L: 8 D. The duration of developmental stage was significantly affected by Si dose. The longest immature period, the shortest longevity of females and the shortest oviposition period were obtained at 2 ppm. In addition, Si dose significantly affected population growth parameters of the mite. The intrinsic rate of natural increase (rm) of the mite ranged from 0.246 to 0.215 day which lowest and the highest values were at 2 ppm and control plants, respectively. The lowest net reproductive rate (R0) and finite rate of increase (λ) of the mite and the highest value of mean generation time (T) and doubling time (DT) were estimated at 2 ppm. The results of this peruse represented that 2 ppm had better potential for decreasing the population of the two-spotted spider mite, and it can be used in the mite integrated pest management programs.

Highlights

  • Bean is one of the most critical crops in the world and makes up stable natural protein for human

  • The lowest net reproductive rate (R0) and finite rate of increase (λ) of the mite and the highest value of mean generation time (T) and doubling time (DT) were estimated at 2 ppm. The results of this peruse represented that 2 ppm had better potential for decreasing the population of the two-spotted spider mite, and it can be used in the mite integrated pest management programs

  • The results showed that the maximum duration of incubation were happen in 2 and 1.5 ppm samples of Si and the minimum were happen in 0 ppm

Read more

Summary

Introduction

Bean is one of the most critical crops in the world and makes up stable natural protein for human. Silicon is the second most abundant constituent in the earth’s crust [1]. It constitutes 27.7% of the total weight in soil after the oxygen (47%). It ranges from 200 to300 g Si Kg−1 in clay soil and 450 g Si Kg−1 in sandy soils. Silicon is an agronomically important fertilizer element that enhances plant tolerance to abiotic stresses. Silicon fertilizer has a double effect on the soil-plant system as under. 1) Improved plant-silicon nutrition reinforces plant-protective properties against diseases, insect attack, and unfavorable climatic conditions; 2) soil treatment with biogeochemical active silicon substances optimizes soil fertility through improved water, physical and chemical soil properties, and maintenance of nutrients in plant-available forms [2] Silicon fertilizer has a double effect on the soil-plant system as under. 1) Improved plant-silicon nutrition reinforces plant-protective properties against diseases, insect attack, and unfavorable climatic conditions; 2) soil treatment with biogeochemical active silicon substances optimizes soil fertility through improved water, physical and chemical soil properties, and maintenance of nutrients in plant-available forms [2]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.