Abstract

AbstractMixtures of magnetite and goethite were formed by the slow oxidation of mixed FeCl2-AlCl3 solutions in an alkaline environment at room temperature. The compositions of the products ranged from almost exclusively magnetite in Al-free systems to goethite only at Al/(Al + Fe) ≈ 0.3. The magnetic phase consisted of a partly oxidized (Fe2+/Fe3+ < 0.5), Al-substituted magnetite. The unit-cell edge length a of the magnetite decreased with increasing Al(Al ≈ 0–0.37 per formula unit, corresponding to 0–14 mole % Al) and decreasing Fe2+ in the structure as described by the empirical relationship α(A) = 8.3455 + 0.0693 Fe2+ - 0.0789 Al. A correlation between the experimentally determined a and that calculated from the unit-cell edge lengths of end-member magnetite, maghemite, and hercynite was highly significant (r = .96) although shifted by about 0.01 Å. Mössbauer spectra showed Al to have entered preferentially the tetrahedral rather than the octahedral sites at low Al substitutions (<0.15 per formula unit), perhaps because of steric reasons. With increasing Al substitution the crystal size of magnetite decreased and structural strain increased, indicating that the structure had a limited capability to incorporate Al under these synthesis conditions. The capacity of the goethite structure to tolerate more Al may explain why goethite replaced magnetite at higher Al concentrations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.