Abstract

Cellulose microfibrils were extracted from kenaf fiber by alkali treatments under various conditions to further characterize their properties and verify the factors which induce fiber degradation. Before treatment, the surface morphologies of the base, middle and tip of the raw fiber were observed. The tensile strength of untreated and treated fibers was measured with a universal tensile machine (UTM). Changes in surface morphologies of cellulose microfibrils were characterized by scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectroscopy was used to characterize the functional group related to cellulosic and non-cellulosic phases. Surface morphology of the middle of the fiber was denser and stronger than that of the periphery and therefore used to define an initial condition of fiber specimen. Alkali treatment in 6% NaOH at room temperature for 1 h increased the tensile strength of the microfibril; 9% NaOH at 100°C for 2 h results in a marked decrease. Damage to the fiber surface and loss of crystallinity were associated with decreased tensile strength.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call