Abstract

The influence of Al content and section thickness on the microstructural features and tensile properties of high-pressure die cast AM series magnesium alloys is quantified in order to better understand the relationship between microstructure and tensile properties. It is found that with increasing aluminum content, the yield strength increases and the ductility decreases. Increasing the plate thickness results in a decrease in both the yield strength and ductility. The grain size, β-Mg17Al12 phase volume fraction, and solute content are all quantified through the thickness of the plates. It is found that the plates have a skin with increased hardness, due to a fine grain structure. The primary factors affecting strengthening in these alloys, including microstructural variations through the thickness, are accounted for using a linear superposition model. We conclude that yield strength is dominated by grain boundary strengthening and solid solution strengthening effects. The through-thickness grain size and solute concentration were quantified and these variations were found to play an important role in controlling the yield strength of these alloys.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call