Abstract

Copper alloys used in connectors rely significantly on stress relaxation resistance as a key property. In this study, a heavily deformed Cu-Cr-Ag-Si alloy underwent aging at varying temperatures, with a subsequent analysis of its mechanical properties and microstructure, with a particular emphasis on understanding the mechanism of improving stress relaxation resistance. As the aging temperature rose, the Cr precipitated into a Cr-Si composite element precipitated phase. Both work hardening and precipitation strengthening played vital roles in enhancing the stress relaxation resistance of the Cu-Cr-Ag-Si alloy, with the latter exerting a more pronounced impact. The notable performance enhancement observed after aging at 450 °C can be attributed to the synergistic effects of work hardening and precipitation strengthening. Following aging at 450 °C, the alloy demonstrated optimal performance, boasting a tensile strength of 495.25 MPa, an electrical conductivity of 84.2% IACS, and a level of 91.12%. These exceptional properties position the alloy as a highly suitable material for connector contacts.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.