Abstract

Shear, in the form of vigorous aeration, is used to control fouling in membrane bioreactor (MBR) systems. However, shear also influences the physicochemical and biological properties of MBR biomass. The current study examines the relationship between the aeration intensity and extracellular polymeric substance (EPS) production in MBRs. Two identical submerged MBRs were operated in parallel but the aeration rate was three times greater in one of the MBRs. The concentrations of floc-associated and soluble EPS were monitored for the duration of the experiment. Microscopic images and floc-size measurements were also collected regularly. The membrane fouling potential of the biomass was quantified using the flux-step method. Increased aeration did not have a direct effect on soluble or floc-associated EPS production in the microfiltration MBRs. However, aeration intensity had a significant effect on predatory organisms. Large aquatic earthworms, Aeolosoma hemprichi, proliferated under lower shear conditions but were never observed in the high shear reactor. Predation by A. hemprichi resulted in increased floc-associated and soluble EPS production. Thus, the mixing conditions in the low shear MBR indirectly resulted in increased soluble EPS concentrations and higher fouling potential. This research suggests that predation can have a significant impact on the production rates of floc-associated and soluble EPS – key parameters driving membrane fouling in MBRs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call