Abstract

Nicotine and alcohol are often co-abused. Adolescence is a vulnerable period for the initiation of both nicotine and alcohol use, which can lead to subsequent neurodevelopmental and behavioral alterations. It is possible that during this vulnerable period, use of one drug leads to neurobiological alterations that affect subsequent consumption of the other drug. The aim of the present study was to determine the effect of nicotine exposure during adolescence on ethanol intake, and the effect of these substances on brain gene expression. Forty-three adolescent female C57BL/6J mice were assigned to four groups. In the first phase of the experiment, adolescent mice (PND 36–41 days) were exposed to three bottles filled with water or nicotine (200 μg/ml) for 22 h a day and a single bottle of water 2 h a day for six days. In the second phase (PND 42–45 days), the 4-day Drinking-in-the-Dark paradigm consisting of access to 20% v/v ethanol or water for 2h or 4h (the last day) was overlaid during the time when the mice did not have nicotine available. Ethanol consumption (g/kg) and blood ethanol concentrations (BEC, mg %) were measured on the final day and whole brains including the cerebellum, were dissected for RNA sequencing. Differentially expressed genes (DEG) were detected with CuffDiff and gene networks were built using WGCNA. Prior nicotine exposure increased ethanol consumption and resulting BEC. Significant DEG and biological pathways found in the group exposed to both nicotine and ethanol included genes important in stress-related neuropeptide signaling, hypothalamic–pituitary–adrenal (HPA) axis activity, glutamate release, GABA signaling, and dopamine release. These results replicate our earlier findings that nicotine exposure during adolescence increases ethanol consumption and extends this work by examining gene expression differences which could mediate these behavioral effects.

Highlights

  • Nicotine and ethanol are often used concomitantly

  • Among notable genes previously associated to nicotine consumption we found an upregulation of the Pro-opiomelanocortin (Pomc) gene which mediates the anorectic effects of nicotine through activation of acetylcholine receptors [62,63] and the vasopressin (Avp) gene, involved in the facilitation of stress-induced neuronal activation and regulation of hypothalamic adrenocorticotropic hormone (ACTH) release [64]

  • This study is one of the first to describe the effects of adolescent nicotine exposure on ethanol intake and the combined effect of both substances on brain gene expression

Read more

Summary

Introduction

Nicotine and ethanol are often used concomitantly. Smoking rates among alcoholics are estimated to be higher than in the general population (around 80% vs. 34%) and the prevalence of alcoholism in the United States has been calculated to be 10 times higher in smokers than among non-smokers [1,2]. Nicotine alters the function of these brain regions by inducing changes in dendritic spines and neuronal morphology, that are produced by alterations in transcriptional regulators of synapse maintenance [15]. These nicotineinduced neurobiological alterations can produce cognitive impairment, increase risk-taking behaviors [16], and increase risk of future depression [17] or anxiety [18]. It is crucial to examine the effects of adolescent nicotine exposure on physiological and behavioral outcomes One such physiological response is changes in gene expression. These changes could alter normal developmental trajectories, increasing the risk of substance use later in life

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.