Abstract

It has been known that in noncoding regions of the chloroplast genome, the pattern of nucleotide substitution is influenced by the two nucleotides flanking the substitution site. In a GC-rich environment, a bias toward transition was observed, whereas in an AT-rich environment, a bias toward transversion was observed. In this study, the influence of the two adjacent neighbors on the substitution pattern was observed in the first intron of the mitochondrial nad4 gene, although the AT content of this intron is only 48%. The proportion of transversions increases from 0.32 to 0.75 as the A + T content (number of A's + T's) of the two nearest neighbors increases from 0 to 2. This trend was also observed in another mitochondrial group I intron with an AT content of 64%. In addition, a similar, though weaker, effect was observed in vertebrate pseudogenes. So this effect is present in all three types of genomes. Furthermore, in contrast to the situation in the noncoding regions of chloroplast DNA, where most nucleotide substitutions occurred in the categories with an A + T content of either 1 or 2, nucleotide substitutions in the mitochondrial first nad4 intron occurred more evenly in three categories of different A + T contents. This might be due largely to the difference in the AT content (0.48 vs. 0.72) between the mitochondrial first nad4 intron and the chloroplast DNA regions studied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.