Abstract
[Purpose] This study investigated the effects of accuracy constraints (targets) placed on the stepping-limb heel-strike (HS) on the electromyogram (EMG) and ground reaction forces (GRFs) during gait initiation. [Subjects and Methods] Twenty healthy subjects (29.2 ± 2.9 years) were asked to begin walking or stepping over a 10-cm-high obstacle at a fast speed. A 3-cm-diameter target was placed on the ground to dictate the position and accuracy of the stepping-limb HS. [Results] The results showed that the initiation velocity increase in the no-target conditions was due to modulation of the stance- and stepping-limb GRFs and a corresponding increase in the tibialis anterior (TA) activities of both limbs before stepping-limb toe-off. This was achieved by significantly increasing the stepping- and stance-limb TAEMG1 (determined between the onset of movement and time to peak anteroposterior (A-P) GRF of the stepping- and stance- limb) for the no-target conditions. It seems, therefore, that TAEMG1 and the slope to stepping-limb peak A-P GRF contributed to the intended velocity of initiation. [Conclusion] These data indicate that gait initiation and/or stepping over an obstacle may prove to be tasks by which motor control can be measured. The present study provides insight into the working mechanisms of the stepping and stance limbs and shows a clear need to further investigate whether the intact or affected limb should be used to initiate gait during rehabilitation and prosthetic training.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.