Abstract

Objectives. The objectives of this study were to evaluate the shear bond strength of zirconia cylinders on a modified titanium surface using different luting cement types.Material and Methods. Eighty titanium disks were divided into two groups (n=40), which were treated with either grinding or a combination of sandblasting and grinding. Then, each group was subdivided into 4 groups (n=10) and the disks were bonded to disks of sintered zirconia using one of four cement types (permanent: composite cement; temporary: polycarboxylate cement, zinc-oxide-eugenol cement, and resin cement). Shear bond strength (SBS) was measured in a universal testing machine. Fracture pattern and site characteristic were recorded. A fractographic analysis was performed with SEM. The chemical analysis of the composition of the fractures was performed using energy-dispersive X-ray spectroscopy (EDS). The results of the experiment were analyzed with two-way analysis of variance and Tukey post hoc test.Results. The highest mean values of SBS were achieved when grinding was combined with sandblasting and when composite cement was used (18.18 MPa). In the temporary cement group, the highest mean values of SBS were for polycarboxylate cement after grinding (3.57 MPa).Conclusion. The choice of cement has a crucial influence on the titanium-cement-zirconia interface quality.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.