Abstract

Plant and animal survey detection rates are important for ecological surveys, environmental impact assessment, invasive species monitoring, and modeling species distributions. Species can be difficult to detect when rare but, in general, how detection probabilities vary with abundance is unknown. We developed a new detectability model based on the time to detection of the first individual of a species. Based on this model, the predicted detection rate is proportional to a power function of abundance with a scaling exponent between zero and one that depends on clustering of individuals. We estimated the model parameters with data from three independent datasets: searches for chenopod shrub species and coins, experimental searches for planted seedlings, and frog surveys at multiple sites in sub‐tropical forests of eastern Australia. Analyses based on the detection time and detection probability suggest that detection rate increases with abundance as predicted. The model provides a way to scale detection rates to cases of low abundance when direct estimation of detection rates is often impractical.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.