Abstract

Arbuscular mycorrhizal (AM) fungi have been shown to be associated with an estimated 70 % of vascular terrestrial plants. Such relationships have been shown to be sensitive to soil disturbance, for example, tillage in the preparation of a seed bed. From the application of arable soil management, AM fungal populations have been shown to be negatively impacted in abundance and diversity, reducing plant growth and development. The present study aims to utilise two sources (multipurpose compost and a commercial inocula) of mycorrhizal fungi for the amendment of arable soils supporting Zulu winter wheat under controlled conditions and quantify plant growth responses. A total of nine fields across three participating farms were sampled, each farm practicing either conventional, reduced, or zero tillage soil management exclusively. Soil textures were assessed for each sampled soil. Via the employment of AM fungal symbiosis quantification methods, AM fungi were compared between soil amendments and their effects on crop growth and development. The present study was able to quantify a mean 6 cm increase to crop height (P<0.001), 10 cm reduction to root length corresponding with a 2.45-fold increase in AM fungal arbuscular structures (P<0.001), a 1.15-fold increase in soil glomalin concentration corresponding to a 1.26-fold increase in soil carbon, and a 1.32-fold increase in the relative abundance of molecular identified AM fungal sequences for compost amended soils compared to control samples. Mycorrhizal inocula, however, saw no change to crop height or root length, AM fungal arbuscules were reduced by 1.43-fold, soil glomalin was additionally reduced by 1.55-fold corresponding to a reduction in soil carbon by 1.31-fold, and a reduction to relative AM fungal species abundance by 1.26-fold. The present study can conclude the addition of compost as an arable soil amendment is more beneficial for the restoration of AM fungi beneficial to wheat production and soil carbon compared to the addition of a commercial mycorrhizal inocula.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.