Abstract

BackgroundA gluten-free diet (GFD) is the most commonly adopted special diet worldwide. It is an effective treatment for coeliac disease and is also often followed by individuals to alleviate gastrointestinal complaints. It is known there is an important link between diet and the gut microbiome, but it is largely unknown how a switch to a GFD affects the human gut microbiome.MethodsWe studied changes in the gut microbiomes of 21 healthy volunteers who followed a GFD for four weeks. We collected nine stool samples from each participant: one at baseline, four during the GFD period, and four when they returned to their habitual diet (HD), making a total of 189 samples. We determined microbiome profiles using 16S rRNA sequencing and then processed the samples for taxonomic and imputed functional composition. Additionally, in all 189 samples, six gut health-related biomarkers were measured.ResultsInter-individual variation in the gut microbiota remained stable during this short-term GFD intervention. A number of taxon-specific differences were seen during the GFD: the most striking shift was seen for the family Veillonellaceae (class Clostridia), which was significantly reduced during the intervention (p = 2.81 × 10−05). Seven other taxa also showed significant changes; the majority of them are known to play a role in starch metabolism. We saw stronger differences in pathway activities: 21 predicted pathway activity scores showed significant association to the change in diet. We observed strong relations between the predicted activity of pathways and biomarker measurements.ConclusionsA GFD changes the gut microbiome composition and alters the activity of microbial pathways.Electronic supplementary materialThe online version of this article (doi:10.1186/s13073-016-0295-y) contains supplementary material, which is available to authorized users.

Highlights

  • A gluten-free diet (GFD) is the most commonly adopted special diet worldwide

  • We investigated the role of a four-week GFD on microbiome composition in healthy individuals and identified moderate but significant changes in their microbiome compositions and even stronger effects on the imputed activity levels of bacterial pathways

  • On a taxonomic level we identified eight bacteria that change significantly in abundance on GFD: Veillonellaceae, Ruminococcus bromii, and Roseburia faecis decreased on GFD, and Victivallaceae, Clostridiaceae, ML615J-28, Slackia, and Coriobacteriaceae increased on GFD

Read more

Summary

Introduction

A gluten-free diet (GFD) is the most commonly adopted special diet worldwide. It is an effective treatment for coeliac disease and is often followed by individuals to alleviate gastrointestinal complaints. The diet’s popularity has risen rapidly in the last few years, making it one of the most popular diets worldwide, along with a low-carbohydrate diet and a fat-free diet. The numbers of those adopting the diet for non-medical reasons surpass the numbers of those who are addressing a permanent gluten-related disorder [3]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call