Abstract

In this work, α-FeOOH/rGO hybrids were firstly prepared by a facile hydrothermal method. X-ray diffraction and transmission electron microscopy results indicated that α-FeOOH nanoparticles were dispersed uniformly on the surface of graphene nanosheets. Subsequently, the α-FeOOH/rGO hybrids were incorporated into polystyrene (PS) matrix for the improvement of the thermal stability and smoke suppression properties. It was found that the thermal stability of PS nanocomposite was obviously enhanced upon the introduction of 2.0wt% α-FeOOH/rGO hybrids. Furthermore, the addition of α-FeOOH/rGO hybrids could improve the smoke suppression properties of PS nanocomposites, as evidenced by the dramatical reduction of carbon monoxide production rate, total smoke release and total smoke production. The total flammable gaseous products from the PS nanocomposites were decreased which further led to the inhibition of smoke. Such a significant improvement in thermal stability and smoke suppression properties was mainly attributed to the physical barrier effect of graphene nanosheets and the catalytic carbonization function of α-FeOOH nanoparticles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.