Abstract

This study explores the effects of growth temperature of InGaN/GaN quantum well (QW) layers on indium migration, structural quality, and luminescence properties. It is found that within a specific range, the growth temperature can control the efficiency of In incorporation into QWs and strain energy accumulated in the QW structure, modulating the luminescence efficiency. Temperature-dependent photoluminescence (TDPL) measurements revealed a more pronounced localized state effect in QW samples grown at higher temperatures. Moreover, a too high annealing temperature will enhance indium migration, leading to an increased density of non-radiative recombination centers and a more pronounced quantum-confined Stark effect (QCSE), thereby reducing luminescence intensity. These findings highlight the critical role of thermal management in optimizing the performance of InGaN/GaN MQWs in LEDs and other photoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.