Abstract

Agricultural carbon mitigation is critical for China to encourage the sustainable development of agriculture and achieve the carbon peak by 2030 and carbon neutrality by 2060. By exploring the impact mechanism of the carbon emission intensity (CEI) of grain production, we can effectively promote the low-carbon transformation of agricultural production and ensure the sustainable development of the food supply. This article analyzes the temporal and spatial evolution of the total carbon emission (TCE) and CEI of staple crops and adopts a dynamic spatial model to explore the influence mechanism and spatial spillover effects of the CEI of grain production based on evidence from China’s major grain-producing provinces from 2002 to 2018. The results indicate that the TCEs of rice, wheat, and maize fluctuate upward and that the CEI in most producing areas decreases with low-low agglomeration (or high-high agglomeration). Among the influencing factors, technology is the main factor reducing CEI. Technical efficiency, urbanization, industrial structure, agricultural agglomeration, and agricultural trade openness can be transmitted to neighboring areas through spatial spillover mechanisms. The spatial spillover mechanisms are resource flow, technology spillover, and policy learning, producing the demonstration effect and siphon effect. Based on our findings, agricultural technology innovation and popularization, urbanization, optimization of the agricultural structure, financial payments, and factor flow among regions should be improved to encourage the low carbon transformation of grain production.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call