Abstract

Polycystic ovary syndrome (PCOS) is a complex endocrine disorder syndrome with an incidence of 6% to 10% in women of reproductive age. Women with PCOS not only exhibit abnormal follicular development and fertility disorders, but also have a greater tendency to develop anxiety and depression. Our aim was to evaluate the ability of inflammatory factors in follicular fluid to predict embryonic developmental potential and pregnancy outcome and to construct a machine learning model that can predict IVF pregnancy outcomes based on indicators such as basic sex hormones, embryonic morphology, the follicular microenvironment, and negative emotion. In this study, inflammatory factors (CRP, IL-6, and TNF-α) in follicular fluid samples obtained from 225 PCOS and 225 non-PCOS women were detected via ELISA. For patients with PCOS, the levels of CRP and IL-6 in the follicular fluid in the pregnant group were significantly lower than those in the nonpregnant group. For non-patients with PCOS, only the level of IL-6 in the follicular fluid was significantly lower in the pregnant group than in the nonpregnant group. In addition, for both PCOS and non-patients with PCOS, compared with those in the pregnant group, patients in the nonpregnant group showed more pronounced signs of anxiety and depression. Finally, the factors that were significantly different between the two subgroups (pregnancy and nonpregnancy) of patients with or without PCOS were identified by an independent sample t test first and further analysed by multilayer perceptron (MLP) and random forest (RF) models to distinguish the two clinical pregnancy outcomes according to the classification function. The accuracy of the RF model in predicting pregnancy outcomes in patients with or without PCOS was 95.6% and 91.1%, respectively. The RF model is more suitable than the MLP model for predicting pregnancy outcomes in IVF patients. This study not only identified inflammatory factors that can affect embryonic development and assessed the anxiety and depression tendencies of PCOS patients, but also constructed an AI model that predict pregnancy outcomes through machine learning methods, which is a beneficial clinical tool.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.