Abstract

Genus g Torelli space is the moduli space of genus g curves of compact type equipped with a homology framing. The hyperelliptic locus is a closed analytic subvariety consisting of finitely many mutually isomorphic components. We use properties of the hyperelliptic Torelli group to show that when \(g\ge 3\) these components do not have the homotopy type of a finite CW complex. Specifically, we show that the second rational homology of each component is infinite-dimensional. We give a more detailed description of the topological features of these components when \(g=3\) using properties of genus 3 theta functions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.