Abstract

In this paper, we prove that the transcendental entire solution of complex linear differential equation $f^{(k)}-e^{P(z)}f=Q(z)$, where $P(z)$ is a transcendental entire function and $Q(z)$ is a polynomial, is of infinite hyper-order under the hypothesis that the Fatou set of $P(z)$ has a multiply connected component.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.