Abstract

In this article, we introduce a framework to address filtering and smoothing with mobile sensor networks for distributed parameter systems. The main problem is formulated as the minimization of a functional involving the trace of the solution of a Riccati integral equation with constraints given by the trajectory of the sensor network. We prove existence and develop approximation of the solution to the Riccati equation in certain trace-class spaces. We also consider the corresponding optimization problem. Finally, we employ a Galerkin approximation scheme and implement a descent algorithm to compute optimal trajectories of the sensor network. Numerical examples are given for both stationary and moving sensor networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.