Abstract

Illusions are effective tools for the study of the neural mechanisms underlying perception because neural responses can be correlated to the physical properties of stimuli and the subject's perceptions. The Franssen illusion (FI) is an auditory spatial illusion evoked by presenting a transient, abrupt tone and a slowly rising, sustained tone of the same frequency simultaneously on opposite sides of the subject. Perception of the FI consists of hearing a single sound, the sustained tone, on the side that the transient was presented. Both subcortical and cortical mechanisms for the FI have been proposed, but, to date, there is no direct evidence for either. The data show that humans and rhesus monkeys perceive the FI similarly. Recordings were taken from single units of the inferior colliculus in the monkey while they indicated the perceived location of sound sources with their gaze. The results show that the transient component of the Franssen stimulus, with a shorter first spike latency and higher discharge rate than the sustained tone, encodes the perception of sound location. Furthermore, the persistent erroneous perception of the sustained stimulus location is due to continued excitation of the same neurons, first activated by the transient, by the sustained stimulus without location information. These results demonstrate for the first time, on a trial-by-trial basis, a correlation between perception of an auditory spatial illusion and a subcortical physiological substrate.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.