Abstract

Abstract Uniform inf-sup conditions are of fundamental importance for the finite element solution of problems in incompressible fluid mechanics, such as the Stokes and Navier–Stokes equations. In this work we prove a uniform inf-sup condition for the lowest-order Taylor–Hood pairs $\mathbb{Q}_2\times \mathbb{Q}_1$ and $\mathbb{P}_2\times \mathbb{P}_1$ on a family of affine anisotropic meshes. These meshes may contain refined edge and corner patches. We identify necessary hypotheses for edge patches to allow uniform stability and sufficient conditions for corner patches. For the proof, we generalize Verfürth’s trick and recent results by some of the authors. Numerical evidence confirms the theoretical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.