Abstract
This paper constructs a function-on-function linear model that identifies the unknown comprehensive response of household electricity consumption toward temperature changes from a data-driven perspective. We also analyze the contribution of dynamic temperature changes to electricity consumption inequality based on large-scale smart meter data. Specifically, we use the Gini index, which characterizes electricity consumption inequality, to explore the heterogeneity of household behaviors. The results show that extreme temperatures will significantly affect household electricity consumption, and the response inertia is approximately 48 days. The response inertia is mainly affected by the household electricity consumption scale. The inertia of large electricity users is four times that of small users. This response inertia difference leads to the occurrence of household electricity consumption inequity inequality in a relatively narrow time window of approximately 18 days. The results also reveal that extreme temperature fluctuations play a key role in enlarging this inequality.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.