Abstract
Estrogen pretreated chick oviduct tissue can be restimulated in vitro by physiological concentrations of estrogen and progesterone. The rates of synthesis of the major egg white proteins, ovalbumin and conalbumin, as well as the cellular levels of their respective mRNAs, increase after characteristic lag periods; this confirms previously reported results in vivo and demonstrates that both the lag phenomena and the mRNA induction are a function of the direct interaction of steroids with oviduct cells. The antagonistic action of progesterone on an estrogen-mediated induction of conalbumin mRNA also occurs in vitro, and the kinetics of this response are examined. Progesterone terminates the estradiol-induced accumulation of conalbumin mRNA within 30 min after addition to the medium; progesterone alone or in combination with estrogen, however, is capable of inducing conalbumin mRNA after a 4 hr lag period. The temporary nature of this antagonism and the fact that it does not occur with ovalbumin induction indicate the complexity of the oviduct's response to steroids. The role of protein synthesis in the induction of both ovalbumin and conalbumin was examined by including protein synthesis inhibitors in the culture medium. Puromycin, cycloheximide, emetine, pactamycin and high salt all block the induction of both ovalbumin and conalbumin mRNA when added together with either estrogen or progesterone. The effect of puromycin is reversible. After the drug is removed from the medium, the mRNA accumulation begins with the same characteristic lag period seen when no inhibitors are added. When given 2 hr after estrogen, puromycin stops the accumulation of conalbumin mRNA within 30 min, whereas cycloheximide and emetine allow the mRNA to accumulate for another 2 hr before causing complete inhibition. There is no effect of protein synthesis inhibitors on the number of estrogen receptors localized in the nucleus. The data suggest a direct link between protein synthesis and the steroid-induced accumulation of specific mRNAs in this system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.