Abstract

The Bursa of Fabricius is an acknowledged central humoral immune organ unique to birds, which provides an ideal research model on the immature B cell development. In this article, our motivation is to study the role on sIgM and establish the molecular basis and functional processes of Bursal Hexapeptide (BHP) in avian immature B cells DT40 cell lines. In this article, we detected the expressions of sIgM mRNA with qPCR in DT40 cells with BHP treatment, and investigated the gene expression profiles of BHP-treated DT40 cells, employing microarray analyses. Also, to validate the differentially expressed genes, we performed KEGG pathway and Gene Ontology analysis in the BHP-treated DT40 cells. Finally, we comparatively analyzed the similar regulated genes and their involved immune functional processes between DT40 cell and mouse immature B cell line WEHI231 cell with BHP treatment. Following the proposed framework, we proved that the BHP enhanced the mRNA expression levels of IgM in DT40 cells, and induced 460 upregulated genes and 460 downregulated genes in BHP-treated DT40 cells. The pathway analysis showed that the differentially regulated genes in DT40 cell line with BHP treatment were involved in 12 enrichment pathways, in which Toll-like receptor signaling pathway was the vital pathways, and cytokine-cytokine receptor interaction and Jak-STAT signaling pathway were another two important pathways in BHP-treated DT40 cells. Moreover, BHP induced the immune related biological processes in BHP-treated DT40 cells, including T cell related, cytokine related, lymphocyte related, and innate immune response GO terms. Finally, the comparatively analysis showed that there were two downregulated genes GATA3 and IFNG to be found co-existed among the differentially expressed genes in BHP-treated DT40 cell and WEHI231 cells, which shared some same immune related functional processes in both cell lines. After the applying the framework, we proved the inducing roles and the gene expression profiles of BHP on avian immature B cells, and verified some molecular basis from the KEGG and GO analysis. These results provided the insight for mechanism on immature B cell differentiation, and offer the essential direction for the vaccine improvement.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call