Abstract

The Indonesian seas provide a sea link between the tropical Pacific and Indian Oceans. The connection is not simple, not a single gap in a ‘wall’, but rather composed of the intricate patterns of passages and seas of varied dimensions. The velocity and temperature/salinity profiles Indonesian throughflow (ITF) are altered en route from the Pacific into the Indian Ocean by sea–air buoyancy and momentum fluxes, as well as diapycnal mixing due to topographic boundary effects and dissipation of tidal energy. The INSTANT program measured the ITF in key channels from 2004 to 2006, providing the first simultaneous view of the main ITF pathways. The along-channel speeds vary markedly with passage; the Makassar and Timor flow is relatively steady in comparison to the seasonal and intraseasonal fluctuations observed in Lombok and Ombai Straits. The flow through Lifamatola Passage is strongly bottom intensified, defining the overflow into the deep Indonesian basins to the south. The 3-year mean ITF transport recorded by INSTANT into the Indian Ocean is 15 × 10 6 m 3/s, about 30% greater than the values of non-simultaneous measurements made prior to 2000. The INSTANT 3-year mean inflow transport is nearly 13 × 10 6 m 3/s. The 2 × 10 6 m 3/s difference between INSTANT measured inflow and outflow is attributed to unresolved surface layer transport in Lifamatola Passage and other channels, such as Karimata Strait. Introducing inflow within the upper 200 m to zero the water column net convergence still requires upwelling within the intervening seas, notably the Banda Sea. A layer of minimum upwelling near 600 m separates upwelling within the thermocline from a deep water upwelling pattern driven by the deep overflow in Lifamatola Passage. For a steady state condition upwelling thermocline water is off-set by a 3-year mean sea to air heat flux of 80 W/m 2 (after taking into account the shoaling of thermocline isotherms between the inflow and outflow portals), which agrees with the climatic value based on bulk formulae sea–air flux calculations, as well as transport weighted temperature of the inflow and outflow water. The INSTANT data reveals interannual fluctuations, with greater upwelling and sea to air heat flux in 2006.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call