Abstract

The enforcement of wildlife laws and the captive breeding of threatened/endangered species requires the ability to identify individual animals. DNA profiles of a variety of large North American mammals, birds, and fish were generated using ten different oligonucleotide probes. The probes tested were four multilocus probes [33.6, 33.15, JE46, and (TGTC)5] and six 'human unilocus' probes [MS1 (D1S7), CMM101 (D14S13), YNH24 (D2S44), EFD52 (D17S26), TBQ7 (D10S28), and MS43 (D12S11). Each of the probes was chemically synthesized, and labeled by the attachment of alkaline phosphatase; after hybridization, the probes were detected by chemiluminescence catalyzed by the enzyme. Initial screening against zoo blots including samples of bear, wolf, large cat, wild sheep, deer, birds, marine mammals, and fish indicated that three multilocus probes [33.15, 33.6, (TGTC)5] gave informative patterns containing 15-40 bands for most or all of the animals tested, as did two of the 'human unilocus' probes (MS1 and CMM101). The other five probes appeared informative only in some species (for example, YNH24 against canids). Subsequent screenings of populations within species were used to determine genetic diversity by analysis of observed bandsharing (S). Large heterologous populations, such as white-tailed deer, exhibited highly diverse band patterns (S < or = 0.2). Geographically isolated and/or genetically constricted animals, such as endangered Mexican wolves, Tule elk, and Columbian white-tailed deer, exhibited much higher frequencies of bandsharing (0.6 < or = S < or = 0.95).(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call