Abstract

Healthy aging simultaneously affects brain structure, brain function, and cognition. These effects are often investigated in isolation ignoring any relationships between them. It is plausible that age related declines in cognitive performance are the result of age-related structural and functional changes. This straightforward idea is tested in within a conceptual research model of cognitive aging. The current study tested whether age-related declines in task-performance were explained by age-related differences in brain structure and brain function using a task-switching paradigm in 175 participants. Sixty-three young and 112 old participants underwent MRI scanning of brain structure and brain activation. The experimental task was an executive context dual task with switch costs in response time as the behavioral measure. A serial mediation model was applied voxel-wise throughout the brain testing all pathways between age group, gray matter volume, brain activation and increased switch costs, worsening performance. There were widespread age group differences in gray matter volume and brain activation. Switch costs also significantly differed by age group. There were brain regions demonstrating significant indirect effects of age group on switch costs via the pathway through gray matter volume and brain activation. These were in the bilateral precuneus, bilateral parietal cortex, the left precentral gyrus, cerebellum, fusiform, and occipital cortices. There were also significant indirect effects via the brain activation pathway after controlling for gray matter volume. These effects were in the cerebellum, occipital cortex, left precentral gyrus, bilateral supramarginal, bilateral parietal, precuneus, middle cingulate extending to medial superior frontal gyri and the left middle frontal gyri. There were no significant effects through the gray matter volume alone pathway. These results demonstrate that a large proportion of the age group effect on switch costs can be attributed to individual differences in gray matter volume and brain activation. Therefore, age-related neural effects underlying cognitive control are a complex interaction between brain structure and function. Furthermore, the analyses demonstrate the feasibility of utilizing multiple neuroimaging modalities within a conceptual research model of cognitive aging.

Highlights

  • Age has a multi-faceted effect on many aspects of our bodies and our cognitive abilities

  • Global switch costs for correct trials were greater for the old adults than the young when tested with linear regression of age group onto switch costs: β = 0.0799, t(173) = 3.90, p < 0.001, mean (SD) of the young: 0.22 (0.083) seconds and for the old: 0.30 (0.15) seconds

  • Analyses only focused on global switch costs since they best matched the block-design used for analysis of the fMRI data

Read more

Summary

Introduction

Age has a multi-faceted effect on many aspects of our bodies and our cognitive abilities. One approach to investigating cognitive control is with tasks requiring dualtask processing (Kray and Lindenberger, 2000). The performance decline when engaged in two tasks is termed switch costs. Switch costs fall into two categories, local and global. Local costs are the trial-to-trial decrements in performance, while global costs refer to block effects, namely blocks of single task conditions compared to blocks of dual task trials. Understanding the neural origins of increasing switch costs and cognitive control is an important goal for understanding the aging process (Braver and Barch, 2002; Madden et al, 2010). Understanding the neural underpinnings of performance decline on task-switching experiments provides better insight for intervention programs aimed at maintaining and improving daily life through maintenance of cognitive control (Karayanidis et al, 2010)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call