Abstract

The fixed point Dirac operator on the lattice has exact chiral zero modes on topologically non-trivial gauge field configurations independently whether these configurations are smooth, or coarse. The relation $n_L-n_R = Q^{FP}$, where $n_L$ $(n_R)$ is the number of left (right)-handed zero modes and $Q^{FP}$ is the fixed point topological charge holds not only in the continuum limit, but also at finite cut-off values. The fixed point action, which is determined by classical equations, is local, has no doublers and complies with the no-go theorems by being chirally non-symmetric. The index theorem is reproduced exactly, nevertheless. In addition, the fixed point Dirac operator has no small real eigenvalues except those at zero, i.e. there are no 'exceptional configurations'.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.