Abstract

Abstract Shallow-angle lidar offers an attractive approach to acquiring spatial profiles of sea waves, which are of value in both oceanographic research and practical engineering applications, such as in the control of wave energy capture devices and for a variety of vessel operations. However, the wave elevation values produced by shallow-angle lidar are inevitably nonuniformly distributed in space and, given that most processing algorithms require uniformly sampled data, an equivalent set of uniformly distributed data must be derived from the lidar measurements. A new class of algorithm is introduced to achieve this goal and applied to experimental shallow-angle lidar data. Compared to traditional methods the new approach has advantages in terms of both computational cost and the degree of nonuniformity that can be accommodated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.