Abstract

Segregation distortion is a meiotic drive system, discovered in wild populations, in which males heterozygous for an SD chromosome and a sensitive SD+ homolog transmit the SD chromosome almost exclusively. SD represents a complex of three closely linked loci in the centromeric region of chromosome 2: Sd, the Segregation distorter gene; E(SD), the Enhancer of Segregation Distortion, required for full expression of drive; and Rsp, the target for the action of Sd, existing in a continuum of states classifiable into sensitive (Rsps) and insensitive (Rspi). In an SD/SD+ male which is Sd E(SD) Rspi/Sd+ E(SD)+ Rsps, the Sd and E(SD) elements act jointly to induce the dysfunction of those spermatids receiving the Rsps chromosome. By manipulating the number of copies and the position of the Enhancer region, I demonstrated that: (1) E(SD), whether in its normal position or translocated to the Y chromosome, is able to enhance the degree of Sd-caused distortion in a dosage-dependent manner; (2) even in the absence of Sd, the E(SD) allele in two doses can cause significant distortion, in Sd+ or Df(Sd)-bearing genotypes; (3) quantitative differences among Enhancers of different sources suggest allelic variation at E(SD), which could account at least in part for differences among wild SD chromosomes in strength of distortion; (4) E(SD)/E(SD)-mediated distortion, like that of Sd, is directed at the Rsp target, whether Rsp is on the second or the Y chromosome; (5) E(SD), like Sd, is suppressed by an unlinked dominant suppressor of SD action. These results show that E(SD) is independently capable of acting on Rsp and is not a simple modifier of the action of Sd. E(SD) provides an example of a trans-acting gene embedded in heterochromatin that can interact with another heterochromatic gene, Rsp, as well as parallel the effect of a euchromatic gene, Sd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.