Abstract

Pseudomonas aeruginosa strain 10265 was recovered from a patient with pneumonia in a Chinese public hospital, and it displays the carbapenem resistance phenotype due to the acquisition of a non-conjugative but mobilizable IncP-6-type plasmid p10265-KPC. p10265-KPC carries a Tn5563-borne defective mer locus, and a novel ΔISEc33-associated blaKPC-2 gene cluster without paired inverted repeats and paired direct repeats at both ends. Mobilization of this ΔISEc33-associated element in p10265-KPC would be attributed to homologous recombination-based insertion of a foreign structure Tn3-ISApu1-orf7-ISApu2- ISKpn27-ΔblaTEM-1-blaKPC-2-ΔISKpn6- korC-orf6-klcA-ΔrepB into a pre-existent intact ISEc33, making ISEc33 truncated at the 3′ end. The previously reported pCOL-1 represents the first sequenced KPC-producing IncP-6 plasmid, while p10265-KPC is the second one. These two plasmids carry two distinct blaKPC-2 gene clusters, which are inserted into the different sites of the IncP-6 backbone and have different evolutionary histories of assembly and mobilization. This is the first report of identification of the IncP-6-type resistance plasmid in China.

Highlights

  • Klebsiella pneumoniae carbapenamases (KPCs) were initially discovered in USA in 1996, and they have disseminated worldwide among Enterobacteriaceae, Pseudomonas and Acinetobacter with K. pneumoniae being the most predominate species (Munoz-Price et al, 2013; Chen et al, 2014b)

  • Plasmids belonging to IncP-2, IncP-5, IncP-7, IncP-10, IncP-12, and IncP-13 incompatibility groups have a narrow host range and cannot be transferred from Pseudomonas to Escherichia coli, while the other IncP types especially including IncP-1, IncP-4, and IncP-6 seem to have a broad host range (Sagai et al, 1976; Boronin, 1992; Xiong et al, 2013)

  • About 2 weeks later, bacterial colonies were observed after cultivation of the urine specimens on the Mueller-Hinton agar, and the bacterial isolate designated 10265 was identified as P. aeruginosa

Read more

Summary

Introduction

Klebsiella pneumoniae carbapenamases (KPCs) were initially discovered in USA in 1996, and they have disseminated worldwide among Enterobacteriaceae, Pseudomonas and Acinetobacter with K. pneumoniae being the most predominate species (Munoz-Price et al, 2013; Chen et al, 2014b). The blaKPC genes are typically present on plasmids, varying in size, genetic structure and incompatibility group (e.g., IncFII, FIA, I2, A/C, N, X, R, P, U, W, L/M, and ColE; Munoz-Price et al, 2013; Chen et al, 2014b). Plasmids belonging to IncP-2, IncP-5, IncP-7, IncP-10, IncP-12, and IncP-13 incompatibility groups have a narrow host range and cannot be transferred from Pseudomonas to Escherichia coli, while the other IncP types especially including IncP-1, IncP-4, and IncP-6 seem to have a broad host range (Sagai et al, 1976; Boronin, 1992; Xiong et al, 2013). IncP-1 corresponds to IncP in the E. coli plasmid classification system, and plasmids of this group can transfer and replicate virtually in all Gram-negative bacteria, contributing to the spread of antibiotic and heavy metal resistance (Popowska and Krawczyk-Balska, 2013)

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call