Abstract

Over the recent years, mesoporous bioactive glasses (MBGs) gained interest as bone regeneration systems, due to their excellent bioactivity and ability to release therapeutic molecules. In order to improve the bone regeneration ability of MBGs, the incorporation of Sr2+ ions, due to its recognized pro-osteogenenic potential, represents a very promising strategy. In this study, MBGs based on the SiO2–CaO system and containing different percentages (2 and 4 mol %) of strontium were prepared by two synthesis methods, in the form of microspheres and nanoparticles. Sr-containing MBGs were characterized by FE-SEM, XRD and N2 adsorption/desorption analysis. The in vitro bioactivity in SBF resulted excellent. The assessment of fibroblast cell (line L929) viability showed that Sr-containing MBGs were biocompatible both in form of micro- and nanoparticles. The osteogenic response of osteoblast-like SAOS-2 cells was investigated by analysing the expression of GAPDH, COL1a1, RANKL, SPARC, OPG and ALPL genes, as cell differentiation markers. The results indicate that the incorporation of Sr into MBG is beneficial for bone regeneration as promotes a pro-osteogenic effect, paving the way to the design of advanced devices enabled by these nanocarriers also in combination with drug release, for the treatment of bone pathologies, particularly in patients with osteoporosis.

Highlights

  • In the last fifty years the chemical and textural features of melt-derived bioactive glasses, discovered by Hench, have been largely modified to improve their biological performances transforming them into materials with biomedical added value [1]

  • The results showed that there was no increase in the inflammatory response due to the presence of both Sr-containing mesoporous bioactive glasses (MBGs)

  • Mesoporous bioactive glasses incorporating different amounts of strontium were successfully prepared through two different synthesis procedures, a base-catalysed sol-gel and an aerosol-assisted spray-drying method, in the form of nano- and micro-particles, respectively

Read more

Summary

Introduction

In the last fifty years the chemical and textural features of melt-derived bioactive glasses, discovered by Hench, have been largely modified to improve their biological performances transforming them into materials with biomedical added value [1] For this reason, from the 1990s the researchers’ attention has been moved to the sol-gel synthesis approach since it provides better textural properties to the glass, such as higher surface area, porosity and homogeneity, involving lower processing temperatures. The use of these templating agents allows providing MBGs with remarkable structural features: highly ordered and tunable porosity in the range of 2 and 50 nm and higher surface area and pore volume values [7] These peculiar characteristics increase MBG reactiveness in body fluids accelerating the process of HA deposition and making these glasses suitable for bone regenerative application [8]

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.