Abstract

The present studies investigated the cardiac potassium channel missense mutation, Q9E-hMiRP1, for potential use as a gene therapy construct for cardiac arrhythmias. This gene abnormality is one of a number of mutations that can cause the long QT syndrome (LQTS), a hereditary arrhythmia disorder that is associated with sudden death. However, individuals who carry the Q9E-hMiRP1 variant are predisposed to developing the LQTS only after clarithromycin administration. Because the electrophysiologic mechanism of action of Q9E-hMiRP1 (i.e., diminished potassium currents resulting in delayed myocardial repolarization) is comparable to that of class III antiarrhythmic agents, we examined Q9E-hMiRP1 as a candidate gene therapy construct for site-specific treatment of reentrant atrial cardiac arrhythmias. Our rationale was also based on the hypothetical safety of the atrial use of Q9E-hMiRP1 because LQTS characteristically causes ventricular but not atrial arrhythmias. Furthermore, the possible use of clarithromycin to control the conduction effects of overexpressed Q9E-hMiRP1 pharmacologically was another attractive feature. In our studies we investigated the use of two bicistronic plasmid DNA gene vectors with either hMiRP1 or Q9E-MiRP1 and green fluorescent protein (GFP), plus a C-terminus of the hMiRP1 or of the Q9E-hMiRP1 coding region for the FLAG (MDYKDDDDK) peptide. We generated two stable cell lines using HEK293 and SH-SY5Y (human cell lines), overexpressing the genes of interest, confirmed by real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blots. The expected plasma membrane localization of each overexpressed transgene was confirmed by immunofluorescent confocal fluorescent microscopy using anti-FLAG antibody. Patchclamp studies demonstrated that cells transfected with Q9E-hMiRP1 plasmid DNA exhibited significantly reduced potassium currents but only with clarithromycin administration. A novel plasmid DNA delivery system was formulated for use in our animal studies of the hMiRP1 vectors, which was composed of DNA-anti-DNA antibody-cationic lipid (DAC) heteroplexes. In vitro and in vivo studies using DAC heteroplexes containing anti-DNA antibodies with nuclear targeting capability demonstrated significantly increased transfection compared to naked DNA, and to DNA-cationic lipid complexes. Pig atrial myocardial injections of DAC heteroplexes demonstrated 16% of regional cardiac myocytes transfected using the Q9E-hMiRP1 plasmid, and 15% of cells with the hMiRP1 vector. It is concluded that the present studies support the view that site-specific gene therapy for atrial arrhythmias is feasible using plasmid vectors for overexpressing ion channel mutations that have electrophysiologic effects comparable to class III antiarrhythmic agents.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.