Abstract
Martin-Lof's constructive type theory forms the basis of this paper. His central notions of category and set, and their relations with Russell's type theories, are discussed. It is shown that addition of an axiom — treating the category of propositions as a set and thereby enabling higher order quantification — leads to inconsistency. This theorem is a variant of Girard's paradox, which is a translation into type theory of Mirimanoff's paradox (concerning the set of all well-founded sets). The occurrence of the contradiction is explained in set theoretical terms. Crucial here is the way a proof-object of an existential proposition is understood. It is shown that also Russell's paradox can be translated into type theory. The type theory extended with the axiom mentioned above contains constructive higher order logic, but even if one only adds constructive second order logic to type theory the contradictions arise.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.