Abstract
If all functions (N -> N) -> N are continuous then 0 = 1. We establish this in intensional (and hence also in extensional) intuitionistic dependent-type theories, with existence in the formulation of continuity expressed as a Sigma type via the Curry-Howard interpretation. But with an intuitionistic notion of anonymous existence, defined as the propositional truncation of Sigma, it is consistent that all such functions are continuous. A model is Johnstone’s topological topos. On the other hand, any of these two intuitionistic conceptions of existence give the same, consistent, notion of uniform continuity for functions (N -> 2) -> N, again valid in the topological topos. It is open whether the consistency of (uniform) continuity extends to homotopy type theory. The theorems of type theory informally proved here are also formally proved in Agda, but the development presented here is self-contained and doesn't show Agda code.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.