Abstract
The incommensurately modulated structures of the isostructural blue bronzes of K and Rb with modulation wavevector q = a* + 0.748 (1)b* + 1/2c* at 100 K have been determined by X-ray diffraction. The lattice parameters of the C-centred monoclinic cell for K0.3MoO3 are: a = 18.162 (2), b = 7.554 (1), c = 9.816 (1) angstrom, beta = 17.393(6)degrees, V = 1195.7 angstrom3, Z = 20, mu = 55.7 cm-1, lambda = 0.7107 angstrom, M(r) = 156.9. For Rb0.3MoO3: a = 18.536 (2), b = 7.556 (1), c = 10.035 (5) angstrom, beta = 118.52 (1)degrees , V = 1234.9 angstrom3, Z = 20, mu = 110.0 cm-1, lambda = 0.7107 angstrom, M(r) = 172.4. The symmetry of the structure can be described as consisting of a one-dimensionally modulated system with the four-dimensional superspace group C(s 1BAR)C2/m (0beta1/2). Th final R(F) = 0.033 for 7985 reflections for the K bronze and 0.032 for 4458 reflections for the Rb bronze. In the modulated structure, valence calculations show that the phase transition to the semiconductor state is accompanied by ordering of Mo5+ along the infinite-chain direction. The metallic conductivity, with delocalization of 4d electrons between clusters by overlapping Mo-O-Mo orbitals along the infinite-chain direction, tums into semiconductor properties by localization of 4d electrons on individual Mo(2) and Mo(3) octahedra (not on Mo10O30 clusters as a whole), modulated with wavevector q. By a comparison of the structures of the blue and red bronzes, their physical properties can be interpreted.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Acta Crystallographica Section B Structural Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.