Abstract
BackgroundThe epidemic rise of diabetes carries major negative public health and economic consequences particularly for low and middle-income countries. The highest predicted percentage growth in diabetes is in the sub-Saharan Africa (SSA) region where to date there has been no data on the incidence of diabetic retinopathy from population-based cohort studies and minimal data on incident diabetes. The primary aims of this study were to estimate the cumulative six-year incidence of Diabetes Mellitus (DM) and DR (Diabetic Retinopathy), respectively, among people aged ≥50 years in Kenya.MethodsRandom cluster sampling with probability proportionate to size were used to select a representative cross-sectional sample of adults aged ≥50 years in 2007-8 in Nakuru District, Kenya. A six-year follow-up was undertaken in 2013–14. On both occasions a comprehensive ophthalmic examination was performed including LogMAR visual acuity, digital retinal photography and independent grading of images. Data were collected on general health and risk factors. The primary outcomes were the incidence of diabetes mellitus and the incidence of diabetic retinopathy, which were calculated by dividing the number of events identified at 6-year follow-up by the number of people at risk at the beginning of follow-up. Age-adjusted risk ratios of the outcomes (DM and DR respectively) were estimated for each covariate using a Poisson regression model with robust error variance to allow for the clustered design and including inverse-probability weighting.ResultsAt baseline, 4414 participants aged ≥50 years underwent complete examination. Of the 4104 non-diabetic participants, 2059 were followed-up at six-years (50 · 2%). The cumulative incidence of DM was estimated at 61 · 0 per 1000 (95% CI: 50 · 3–73 · 7) in people aged ≥50 years. The cumulative incidence of DR in the sample population was estimated at 15 · 8 per 1000 (95% CI: 9 · 5–26 · 3) among those without DM at baseline, and 224 · 7 per 1000 (116.9–388.2) among participants with known DM at baseline. A multivariable risk factor analysis demonstrated increasing age and higher body mass index to be associated with incident DM. DR incidence was strongly associated with increasing age, and with higher BMI, urban dwelling and higher socioeconomic status.ConclusionsDiabetes Mellitus is a growing public health concern with a major complication of diabetic retinopathy. In a population of 1 · 6 million, of whom 150,000 are ≥50 years, we estimated that 1650 people aged ≥50 develop DM per year, and 450 develop DR. Strengthening of health systems is necessary to reduce incident diabetes and its complications in this and similar settings.
Highlights
The epidemic rise of diabetes carries major negative public health and economic consequences for low and middle-income countries
There was strong evidence that those who were lost to follow-up (LTFU) were less likely to be Kikuyu or Kalenjin speakers and more likely to be from urban areas (p < 0.001)
Expected number of new diabetic retinopathy (DR) diagnoses in those 50+ year old with Diabetes Mellitus (DM) per year is/(6 × 1000) Sample sizes are small for the DR analyses, so estimates have wide confidence intervals cumulative incidence of DM in this study was 61 cases per 1000, equating to approximately 10 new cases per 1000 of population aged ≥50 per year
Summary
The epidemic rise of diabetes carries major negative public health and economic consequences for low and middle-income countries. The highest predicted percentage growth in diabetes is in the sub-Saharan Africa (SSA) region where to date there has been no data on the incidence of diabetic retinopathy from population-based cohort studies and minimal data on incident diabetes. The number of adults with Diabetes Mellitus (DM) in Africa is predicted to double from 12 · 1 million in 2010 to 23 · 9 million in 2030 based on projections from prevalence data [1]. There are few incidence data from low and middle-income settings, sub-Saharan Africa (SSA), making it difficult to plan screening and treatment services [2, 3]. Population-based incidence data for DR are lacking for SSA, some clinical follow-up data are available [6]
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.