Abstract

A2B adenosine receptor (A2BAR) is known to be the regulator of bone homeostasis, but its regulatory mechanisms in osteoclast formation are less well-defined. Here, we demonstrate the effect of A2BAR stimulation on osteoclast differentiation and activity by RANKL. A2BAR was expressed in bone marrow-derived monocyte/macrophage (BMM) and RANKL increased A2BAR expression during osteoclastogenesis. A2BAR stimulation with its specific agonist BAY 60-6583 was sufficient to inhibit the activation of ERK1/2, p38 MAP kinases and NF-κB by RANKL as well as it abrogated cell-cell fusion in the late stage of osteoclast differentiation. Stimulation of A2BAR suppressed the expression of osteoclast marker genes, such as c-Fos, TRAP, Cathepsin-K and NFATc1, induced by RANKL, and transcriptional activity of NFATc1 was also inhibited by stimulation of A2BAR. A2BAR stimulation caused a notable reduction in the expression of Atp6v0d2 and DC-STAMP related to cell-cell fusion of osteoclasts. Especially, a decrease in bone resorption activity through suppression of actin ring formation by A2BAR stimulation was observed. Taken together, these results suggest that A2BAR stimulation inhibits the activation of ERK1/2, p38 and NF-κB by RANKL, which suppresses the induction of osteoclast marker genes, thus contributing to the decrease in osteoclast cell-cell fusion and bone resorption activity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call