Abstract

1. A-type outward currents were studied in sensory hair cells isolated from the semicircular canals (SCC) of the leopard frog (Rana pipiens) with whole-cell voltage- and current-clamping techniques. 2. There appear to be two classes of A-type outward-conducting potassium channels based on steady-state, kinetic, pharmacological parameters, and reversal potential. 3. The two classes of A-type currents differ in their steady-state inactivation properties as well as in the kinetics of inactivation. The steady-state inactivation properties are such that a significant portion of the fast channels are available from near the resting potential. 4. The inactivating channels studied do not appear to be calcium dependent. 5. The A-channels in hair cells appear to subserve functions that are analogous to IA functions in neurons, that is, modulating spike latency and Q (the oscillatory damping function). The A-currents appear to temporally limit the hair cell voltage response to a current injection.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.