Abstract

A bacteriophage phi X174-based site-specific mutagenesis system for the study of the in vivo mutagenic frequency and specificity of carcinogen-induced modification in DNA is presented. A (-)-strand primer containing O6-methylguanine in a specific site was hybridized to a single-stranded region in gene G of phi X gapped duplex DNA. The hybrid was enzymatically converted to replicative form DNA and was used to transform Escherichia coli cells. All gene G mutants generated by the modification were rescued by genetic complementation. An amber mutation in lysis gene E of the (+) strand of the replicative form DNA prevented lytic growth of wild-type phage derived from this strand. In each mutant-containing infective center produced from the transformed cells, gene G mutant phage were present in a 3:1 ratio compared to wild type. Thus, in vivo, O6-methylguanine in replicating phi X DNA has a mutagenic frequency of 75%. When repair of O6 methylguanine occurred, it was prereplicative. The mutations were due exclusively to the misincorporation of thymine.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call