Abstract

Osteoclast activity was studied on nacre, the mother of pearl (MOP) in order to assess the plasticity of bone resorbing cells and their capacity to adapt to a biomineralized material with a different organic and mineral composition from that of its natural substrate, bone. Pure MOP, a natural biomineralized CaCO 3 material, was obtained from Pinctada oyster shell. When implanted in the living system, nacre has proven to be a sustainable bone grafting material although a limited surface degradation process. Osteoclast stem cells and mature osteoclasts were cultured on MOP substrate and osteoclast precursor cells were shown to differentiate into osteoclasts capable of resorbing nacre substrate. However, analysis of the organization of the cytoskeleton showed that both a sealing zone and a podosome structure were observed on the nacre substrate. Moreover, MOP resorption efficiency was consistently found to be lower than that of bone and appeared to be a limited process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.