Abstract

The intestinal metabolism and absorption of enterostatin was studied using brush-border membrane vesicles and an in vitro model of intestinal segments from rabbit ileum mounted in Sweetana-Grass diffusion chamber. Hydrolysis of enterostatin was observed with both epithelial sheets and brush-border membranes. The main metabolite was found to be des-arginine-enterostatin. Dipeptidylpeptidase IV was found to play a minor role in enterostatin degradation, whereas carboxypeptidase P activity accounted for the initial step of peptide hydrolysis. More than 50% of the amount of enterostatin added to the mucosal compartment of the Sweetana-Grass diffusion chamber was degraded after 30 min. Enterostatin was mainly absorbed as degradation products but a small transepithelial passage of des-arginine-enterostatin and immunoreactive enterostatin was also detected. Although immunoreactive enterostatin exhibits a low apparent permeability coefficient in rabbit ileum, the luminal production of this peptide may be of physiological importance in the control of appetite.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.