Abstract

Tensile strength of poly(glycolic acid) suture (PGA) of size 2-0 was examined as a function of three pH levels, 5.25, 7.44, and 10.09 of the buffer. Cord and yarn grip was used to eliminate grip-induced failure of breaking strength tests. It was found that Dexon sutures degraded significantly faster in pH = 10.09 buffer than the other two lower pH buffers. There was no significant difference in degradation rate at pH = 5.25 and 7.44. At 7 days, PGA sutures lost almost half of its original tensile strength at pH = 10.09, while the same sutures still remained more than 95% of their original breaking strength at buffers of pH = 5.25 and 7.44. After 21 days, no trace of sutures could be detected in the buffer of pH = 10.09 while about 20% strength still remained in the buffers of pH = 7.44 and 5.25. Cage effect in the crystalline phase and pH dependent hydrogen bonding were introduced to explain the difference in degradation phenomenon of PGA at buffers of various pH.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.