Abstract

To assess the effect of interfacial surface roughness on the flexure strength and fracture mode and origin utilizing an in-vitro assessment of the clinical failure conditions expected for all-ceramic crowns and the connector area of fixed partial dentures (FPDs) using bilayered ceramic specimens tested in bi-axial flexure. Sets of 20 bilayered composite discs, with core:dentine thickness ratio of 2:1 and interfacial surface roughnesses determined by alumina abrasion with different alumina particle sizes, were tested in bi-axial flexure with both the reinforcing core and veneering dentine loaded in tension. Mean flexure strengths, standard deviations and associated Weibull Moduli (m) were determined. Optical microscopy was employed for identification of the fracture mode and origin for the failure all-ceramic crowns and the connector area of FPDs. The interfacial surface roughness influenced the bi-axial flexure strength and reliability of the flexure strength data when both the reinforcing core and veneering dentine porcelain were tested in tension. The number of fracture fragments, frequency of occurrence of specimen delaminations, Hertzian cone formations and sub-critical radial cracking in the bilayered dental ceramic composite disc-shaped specimens was also dependent on the interfacial surface roughness and the surface loaded in tension. The fracture resistance, failure mode and failure origin in bilayered ceramics tested to represent the clinical failure mode of all-ceramic crowns and FPDs are dependent upon the interfacial surface roughness and the modulus of the material in tension.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.