Abstract

The recent surge in beta-lactamase resistance has created superbugs, which pose a current and significant threat to public healthcare. This has created an urgent need to keep pace with the discovery of inhibitors that can inactivate these beta-lactamase producers. In this study, the in vitro and in vivo activity of 1,4,7-triazacyclononane-1,4,7 triacetic acid (NOTA)-a potential metallo-beta-lactamase (MBL) inhibitor was evaluated in combination with meropenem against MBL producing bacteria. Time-kill studies showed that NOTA restored the efficacy of meropenem against all bacterial strains tested. A murine infection model was then used to study the in vivo pharmacokinetics and efficacy of this metal chelator. The coadministration of NOTA and meropenem (100mg/kg.bw each) resulted in a significant decrease in the colony-forming units of Klebsiella pneumoniae NDM-1 over an 8-h treatment period (>3 log10 units). The findings suggest that chelators, such as NOTA, hold strong potential for use as a MBL inhibitor in treating carbapenem-resistant Enterobacterale infections.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call